PhD Studentship – Atomistic simulation methods for ion conduction in battery materials
University of Southampton, School of Chemistry
United Kingdom

PhD Studentship – Atomistic simulation methods for ion conduction in battery materials

School of Chemistry

Location: Highfield Campus

Closing Date: Wednesday 31 July 2019

Reference: 1077318EB

PhD Supervisor: Prof Chris-Kriton Skylaris


co supervisor: Dr Denis Kramer


PhD Description: Applications are invited for a prestigious four-year EPSRC industrial CASE PhD studentship to work in the Skylaris group (University of Southampton) on large-scale first principles quantum simulations of battery materials for electric vehicles. The project will be co-supervised by Professor Chris-Kriton Skylaris and Dr Denis Kramer (Southampton) and Dr Felix Hanke (Dassault Systèmes, Cambridge) and will be based in Southampton with substantial placements at the industrial partner in Cambridge.


A revolution is currently taking place in transport with the rapid growth of clean vehicle technologies. Much of this effort is directed towards electric vehicles which have benefitted from the availability of Li ion batteries which offer a power to weight ratio useful for many applications. However, there are still substantial challenges in terms of battery performance during realistic operating conditions, such as safety, degradation and capacity fade. The key to the solution of many of these issues lies in the materials and the processes they perform within a battery.


This PhD project will apply highly accurate atomistic simulations on materials and interfaces involved in state-of-the-art battery technologies, to understand how the properties of these complex materials can be tailored to improve battery performance. Specifically, the ion transport properties and the link between material chemistry and battery performance will be explored in detail.


An essential tool for this task are quantum mechanical calculations from first principles which provide a very accurate description of materials. Conventionally such calculations have been limited to a few hundred atoms at most because the computational effort associated with first principles quantum methods such as Density Functional Theory (DFT) scales as the third power of the number of atoms and is computationally prohibitive. Recently this situation has started to change due to the ever-increasing power of supercomputers and new developments in theory such as linear-scaling DFT and in particular the ONETEP program for linear-scaling DFT which will be used for this project as it is capable of calculations with thousands of atoms and retains the near-complete basis set accuracy of conventional DFT.


A prominent role in this work will be played by recent and ongoing developments in ONETEP with novel highly accurate exchange correlation methods, advanced solvent models, and fast configuration sampling techniques. These quantum methods will be further developed and validated in test cases involving battery materials. Examples of areas critical for the understanding of battery functions where these methods can be used include the ion transport in the electrodes and the construction of models of the very complex Solid-Electrolyte Inter-phase (SEI) which is critical for the function of Li-ion batteries. As these are inherently multiscale problems the outputs from these simulations will be used to inform larger-scale models based on classical atomistic and continuum descriptions of materials. The pioneering applications of quantum methods during this PhD will be formulated into workflows that will provide robust generally applicable frameworks suitable for future simulations of batteries.


Dassault Systèmes will provide periods of placement in their research group in Cambridge where the PhD student will be able to get first-hand experience in industry standard multiscale simulation techniques applied to battery materials and in case studies from industry. The project will also involve close interaction with the Multiscale Modelling of Batteries consortium of the Faraday Institution, of which Southampton University is a founding partner.


This is a fully funded PhD studentship. Applications are encouraged from top-level graduates in Chemistry, Physics or related subject. Experience with first principles quantum mechanical calculations and/or classical molecular dynamics simulations is desirable but not essential.


If you wish to discuss any details of the project informally, please contact Professor Chris-Kriton Skylaris, Email:


Due to funding restrictions this position is only open to UK/EU applicants


Applications for a PhD in Chemistry should be submitted online at


Please ensure you select the academic session 2019-2020 in the academic year field and click on the Research radio button. Enter Chemistry in the search text field.


Please place Skylaris/battery-quantum in the field for proposed supervisor/project


General enquiries should be made to Professor Chris-Kriton Skylaris at Any queries on the application process should be made to


Applications will be considered in the order that they are received, and the position will be considered filled when a suitable candidate has been identified

If you apply for this position please say you saw it on Physicaloxy


All Jobs


Harvard University Academic Positions

Kuwait University Current Faculty Openings

Osaka University Academic Opportunities

Purdue University Job Postings for Faculty Positions

Texas Tech University Faculty Openings

Tsinghua University Job Postings

University of Cambridge Job Openings

University of Geneva Faculty Opportunities

University of New South Wales Job Openings

University of Nottingham Research Positions

University of Oslo Academic Jobs

University of Saskatchewan Faculty Positions

University of Southampton Research Vacancies

University of Tokyo Current Academic Vacancies

University of Toronto Open Faculty Positions

University of Zurich Job Postings